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Multi-Frame Demosaicing and

Super-Resolution of Color Images
Sina Farsiu∗ , Michael Elad ‡ , Peyman Milanfar §

Abstract

In the last two decades, two related categories of problems have been studied independently in the

image restoration literature: super-resolution and demosaicing. A closer look at these problems reveals the

relation between them, and as conventional color digital cameras suffer from both low-spatial resolution

and color-filtering, it is reasonable to address them in a unified context. In this paper, we propose a fast

and robust hybrid method of super-resolution and demosaicing, based on a MAP estimation technique

by minimizing a multi-term cost function. The L1 norm is used for measuring the difference between

the projected estimate of the high-resolution image and each low-resolution image, removing outliers

in the data and errors due to possibly inaccurate motion estimation. Bilateral regularization is used

for spatially regularizing the luminance component, resulting in sharp edges and forcing interpolation

along the edges and not across them. Simultaneously, Tikhonov regularization is used to smooth the

chrominance components. Finally, an additional regularization term is used to force similar edge location

and orientation in different color channels. We show that the minimization of the total cost function is

relatively easy and fast. Experimental results on synthetic and real data sets confirm the effectiveness of

our method.
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I. INTRODUCTION

Several distorting processes affect the quality of images acquired by commercial digital cameras. Some

of the more important distorting effects include warping, blurring, color-filtering, and additive noise. A

common image formation model for such imaging systems is illustrated in Figure1 1. In this model, a

real-world scene is seen to be warped at the camera lens because of the relative motion between the

scene and camera. The imperfections of the optical lens results in the blurring of this warped image

which is then sub-sampled and color-filtered at the CCD. The additive readout noise at the CCD will

further degrade the quality of captured images.

There is a growing interest in the multi-frame image reconstruction algorithms that compensate for the

shortcomings of the imaging system. Such methods can achieve high-quality images using less expensive

imaging chips and optical components by capturing multiple images and fusing them.

In digital photography, two image reconstruction problems have been studied and solved independently

- super-resolution (SR) and demosaicing. The former refers to the limited number of pixels and the desire

to go beyond this limit using several exposures. The latter refers to the color-filtering applied on a single

CCD array of sensors on most cameras, that measures a subset of R (red), G (green), and B (blue)

values, instead of a full RGB field2. It is natural to consider these problems in a joint setting because

both refer to resolution limitations at the camera. Also, since the measured images are mosaiced, solving

the super-resolution problem using pre-processed (demosaiced) images is sub-optimal and hence inferior

to a single unifying solution framework. In this paper we propose a fast and robust method for joint

multi-frame demosaicing and color super-resolution.

The organization of this paper is as follows. In Section II we review the super-resolution and demo-

saicing problems and the inefficiency of independent solutions for them. In Section III we formulate and

analyze a general model for imaging systems applicable to various scenarios of multi-frame image recon-

struction. We also formulate and review the basics of the maximum a posteriori (MAP) estimator, robust

1This paper (with all color pictures and a MATLAB-based software package for resolution enhancement) is available at

http://www.ee.ucsc.edu/∼milanfar .

2Three CCD cameras which measure each color field independently tend to be relatively more expensive.
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Fig. 1. Block diagram representing the image formation model considered in this paper, where X is the intensity distribution

of the scene, V is the additive noise, and Y is the resulting color-filtered low-quality image. The operators F , H , D, and A

are representatives of the warping, blurring, down-sampling, and color-filtering processes, respectively.
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data fusion, and regularization methods. Armed with material developed in earlier sections, in Section

IV we present and formulate our joint multi-frame demosaicing and color-super-resolution method. In

Section V we review two related methods of multi-frame demosaicing. Simulations on both synthetic

and real data sequences are given in Section VI and concluding remarks are drawn in Section VII.

II. AN OVERVIEW OF SUPER-RESOLUTION AND DEMOSAICING PROBLEMS

In this section, we study and review some of the previous work on super-resolution and demosaicing

problems. We show the inefficiency of independent solutions for these problems and discuss the obstacles

to designing a unified approach for addressing these two common shortcomings of digital cameras.

A. Super-Resolution

Digital cameras have a limited spatial resolution, dictated by their utilized optical lens and CCD array.

Surpassing this limit can be achieved by acquiring and fusing several low-resolution (LR) images of

the same scene, producing high-resolution (HR) images; this is the basic idea behind super-resolution

techniques [1], [2], [3], [4].

In the last two decades a variety of super-resolution methods have been proposed for estimating the

HR image from a set of LR images. Early works on SR showed that the aliasing effects in the LR images

enable the recovery of the high-resolution (HR) fused image, provided that a relative sub-pixel motion

exists between the under-sampled input images [5]. However, in contrast to the clean and practically naive

frequency domain description of SR in that early work, in general SR is a computationally complex and

numerically ill-behaved problem in many instances [6]. In recent years more sophisticated SR methods

were developed (See [3], [6], [7], [8], [9], [10] as representative works).

Note that almost all super-resolution methods to date have been designed to increase the resolution

of a single channel (monochromatic) image. A related problem, color SR, addresses fusing a set of

previously demosaiced color LR frames to enhance their spatial resolution. To date, there is very little

work addressing the problem of color SR. The typical solution involves applying monochromatic SR

algorithms to each of the color channels independently [11], [12], while using the color information to

improve the accuracy of motion estimation. Another approach is transforming the problem to a different

color space, where chrominance layers are separated from luminance, and SR is applied only to the

luminance channel [7]. Both of these methods are sub-optimal as they do not fully exploit the correlation

across the color bands.
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In Section VI we show that ignoring the relation between different color channels will result in color

artifacts in the super-resolved images. Moreover, as we will advocate later in this paper, even a proper

treatment of the relation between the color layers is not sufficient for removing color artifacts if the

measured images are mosaiced. This brings us to the description of the demosaicing problem.

B. Demosaicing

A color image is typically represented by combining three separate monochromatic images. Ideally,

each pixel reflects three data measurements; one for each of the color bands 3. In practice, to reduce

production cost, many digital cameras have only one color measurement (red, green, or blue) per pixel

4. The detector array is a grid of CCDs, each made sensitive to one color by placing a color-filter

array (CFA) in front of the CCD. The Bayer pattern shown on the left hand side of Figure 3 is a very

common example of such a color-filter. The values of the missing color bands at every pixel are often

synthesized using some form of interpolation from neighboring pixel values. This process is known as

color demosaicing.

Numerous demosaicing methods have been proposed through the years to solve this under-determined

problem, and in this section we review some of the more popular ones. Of course, one can estimate the

unknown pixel values by linear interpolation of the known ones in each color band independently. This

approach will ignore some important information about the correlation between the color bands and will

result in serious color artifacts. Note that the Red and Blue channels are down-sampled two times more

than the Green channel. It is reasonable to assume that the independent interpolation of the Green band

will result in a more reliable reconstruction than the Red or Blue bands. This property, combined with

the assumption that the Red
Green and Blue

Green ratios are similar for the neighboring pixels, make the basics

of the smooth hue transition method first discussed in [13].

Note that there is a negligible correlation between the values of neighboring pixels located on the

different sides of an edge. Therefore, although the smooth hue transition assumption is logical for smooth

regions of the reconstructed image, it is not successful in the high-frequency (edge) areas. Considering

this fact, gradient-based methods, first addressed in [14], do not preform interpolation across the edges of

an image. This non-iterative method uses the second derivative of the Red and Blue channels to estimate

the edge direction in the Green channel. Later, the Green channel is used to compute the missing values

in the Red and Blue channels.

3This is the scenario for the more expensive 3-CCD cameras.

4This is the scenario for cheaper 1-CCD cameras.
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A variation of this method was later proposed in [15], where the second derivative of the Green

channel and the first derivative of the Red (or Blue) channels are used to estimate the edge direction

in the Green channel. The smooth hue and gradient based methods were later combined in [44]. In this

iterative method, the smooth hue interpolation is done with respect to the local gradients computed in

eight directions about a pixel of interest. A second stage using anisotropic inverse diffusion will further

enhance the quality of the reconstructed image. This two step approach of interpolation followed by an

enhancement step has been used in many other publications. In [16], spatial and spectral correlations

among neighboring pixels are exploited to define the interpolation step, while adaptive median filtering

is used as the enhancement step. A different iterative implementation of the median filters is used as the

enhancement step of the method described in [17], that take advantage of a homogeneity assumption in

the neighboring pixels.

Iterative MAP methods form another important category of demosaicing methods. A MAP algorithm

with a smooth chrominance prior is discussed in [18]. The smooth chrominance prior is also used in

[19], where the original image is transformed to YIQ representation. The chrominance interpolation is

preformed using isotropic smoothing. The luminance interpolation is done using edge directions computed

in a steerable wavelet pyramidal structure.

Other examples of popular demosaicing methods available in published literature are [20], [21], [22],

[23], [24], [25], and [26]. Almost all of the proposed demosaicing methods are based on one or more of

these following assumptions:

1) In the constructed image with the mosaicing pattern, there are more green sensors with regular

pattern of distribution than blue or red ones (in the case of Bayer CFA there are twice as many

greens than red or blue pixels and each is surrounded by 4 green pixels).

2) Most algorithms assume a Bayer CFA pattern, for which each red, green and blue pixel is a neighbor

to pixels of different color bands.

3) For each pixel one and only one color band value is available.

4) The pattern of pixels does not change through the image.

5) The human eye is more sensitive to the details in the luminance component of the image than the

details in chrominance component [19].

6) The human eye is more sensitive to chromatic changes in the low spatial frequency region than the

luminance change [23].

7) Interpolation should be preformed along and not across the edges.

8) Different color bands are correlated with each other.
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9) Edges should align between color channels.

Note that even the most popular and sophisticated demosaicing methods will fail to produce satisfactory

results when severe aliasing is present in the color-filtered image. Such severe aliasing happens in cheap

commercial still or video digital cameras, with small number of CCD pixels. The color artifacts worsen

as the number of CCD pixels decreases. The following example shows this effect.

Figure 2.a shows a HR image captured by a 3-CCD camera. If for capturing this image, instead of a

3-CCD camera a 1-CCD camera with the same number of CCD pixels was used, the inevitable mosaicing

process will result in color artifacts. Figure 2.d shows the result of applying demosaicing method of [44]

with some negligible color-artifacts on the edges.

Note that many commercial digital video cameras can only be used in lower spatial resolution modes

while working in higher frame rates. Figure 2.b shows a same scene from a 3-CCD camera with a down-

sampling factor of 4 and Figure 2.e shows the demosaiced image of it after color-filtering. Note that the

color artifacts in this image are much more evident than 2.d. These color artifacts may be reduced by

low-pass filtering the input data before color-filtering. Figure 2.c shows a factor of four down-sampled

version of 2.a, which is blurred with a symmetric Gaussian low-pass filter of size 4 × 4 with standard

deviation equal to one, before down-sampling. The demosaiced image shown in 2.f has less color artifacts

than 2.e, however it has lost some high-frequency details.

The poor quality of single-frame demosaiced images stimulates us to search for multi-frame demo-

saicing methods, where the information of several low-quality images are fused together to produce

high-quality demosaiced images.

C. Merging super-resolution and demosaicing into one process

Referring to the mosaic effects, the geometry of the single-frame and multi-frame demosaicing problems

are fundamentally different, making it impossible to simply cross apply traditional demosaicing algorithms

to the multi-frame situation. To better understand the multi-frame demosaicing problem, we offer an

example for the case of translational motion. Suppose that a set of color-filtered LR images is available

(images on the left in Figure 3). We use the two step process explained in Section IV to fuse these images.

The Shift-And-Add image on the right side of Figure 3 illustrates the pattern of sensor measurements in

the HR image grid. In such situations, the sampling pattern is quite arbitrary depending on the relative

motion of the LR images. This necessitates different demosaicing algorithms than those designed for the

original Bayer pattern.
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a: Original b: Down-sampled c: Blurred and down-sampled

downd: Demosaiced (a)down downe: Demosaiced (b)down downf: Demosaiced (c)down

Fig. 2. A HR image (a) captured by a 3-CCD camera is down-sampled by a factor of four (b). In (c) the image in (a) is

blurred by a Gaussian kernel before down-sampling by a factor of 4. The images in (a), (b), and (c) are color-filtered and then

demosaiced by the method of [44]. The results are shown in (d), (e), (f), respectively.

Figure 3 shows that treating the green channel differently than the red or blue channels, as done in

many single-frame demosaicing methods before, is not useful for the multi-frame case. While globally

there are more green pixels than blue or red pixels, locally, any pixel may be surrounded by only red or

blue colors. So, there is no general preference for one color band over the others (the first and second

assumptions in Section II-B are not true for the multi-frame case).

Another assumption, the availability of one and only one color band value for each pixel, is also not
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Fig. 3. Fusion of 7 Bayer pattern LR images with relative translational motion (the figures in the left side of the accolade)

results in a HR image (Ẑ) that does not follow Bayer pattern (the figure in the right side of the accolade). The symbol “?”

represents the HR pixel values that were undetermined (as a result of insufficient LR frames) after the Shift-And-Add step

(Shift-And-Add method is extensively discussed in [3], and briefly reviewed in III-F).

correct in the multi-frame case. In the under-determined cases 5, there are not enough measurements to fill

the HR grid. The symbol “?” in Figure 3 represents such pixels. On the other hand, in the over-determined

cases6, for some pixels, there may in fact be more than one color value available.

The fourth assumption in the existing demosaicing literature described earlier is not true because the

field of view (FOV) of real world LR images changes from one frame to the other, so the center and the

border patterns of red, green, and blue pixels differ in the resulting HR image.

III. MATHEMATICAL MODEL AND SOLUTION OUTLINE

A. Mathematical Model of the Imaging System

Figure 1 illustrates the image degradation model that we consider. We represent this approximated

forward model by the following equation:

Y i(k) = Di(k)H(k)F (k)X i + V i(k) = Ti(k)X i + V i(k) k = 1, . . . , N

5where the number of non-redundant LR frames is smaller than the square of resolution enhancement factor. A resolution

enhancement factor of r means that LR images of dimension M × M produce a HR output of dimension rM × rM .

6where the number of non-redundant LR frames is larger than the square of resolution enhancement factor.
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i = R,G,B , (1)

which can be also expressed as:

Y = TX + V , Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y R(1)

Y G(1)

Y B(1)

Y R(2)
...

Y B(N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V R(1)

V G(1)

V B(1)

V R(2)
...

V B(N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

TR(1)

TG(1)

TB(1)

TR(2)
...

TB(N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,X =

⎡
⎢⎢⎢⎢⎣

XR

XG

XB

⎤
⎥⎥⎥⎥⎦ . (2)

The vectors X i and Y i(k) are representing the ith band (R, G, or B) of the HR color frame and the

kth LR frame after lexicographic ordering, respectively. Matrix F (k) is the geometric motion operator

between the HR and LR frames. The camera’s point spread function (PSF) is modelled by the blur matrix

H(k). The matrix Di(k) represents the down-sampling operator, which includes both the color-filtering

and CCD down-sampling operations7. Geometric motion, blur, and down-sampling operators are covered

by the operator Ti(k), which we call the system matrix. The vector V i(k) is the system noise and N is

the number of available LR frames.

The HR color image (X) is of size [12r2M2 × 1]), where r is the resolution enhancement factor. The

size of the vectors V G(k) and Y G(k) is [2M2×1] and vectors V R(k), Y R(k), V B(k), and Y B(k) are of

size [M 2×1]. The geometric motion and blur matrices are of size [4r2M2×4r2M2]. The down-sampling

and system matrices are of size [2M 2 × 4r2M2] for the Green band and of size [M 2 × 4r2M2] for the

Red and Blue bands8.

Considered separately, super-resolution and demosaicing models are special cases of the general model

presented above. In particular, in the super-resolution literature the effect of color-filtering is usually

ignored [9], [10], [3] and therefore the model is simplified to:

Y (k) = D(k)H(k)F (k)X + V (k) k = 1, . . . , N . (3)

In this model the LR images Y (k) and the HR image X are assumed to be monochromatic. On the

other hand, in the demosaicing literature only single frame reconstruction of color images is considered,

7It is convenient to think of Di(k) = Ai(k)D(k), where D(k) models the incoherent down-sampling effect of the CCD and

Ai(k) models the color-filter effect [27].

8Note that color super-resolution by itself is a special case of this model, where vectors V i(k) and Y i(k) are of size [4M2×1]

and matrices Ti(k) and Di(k) are of size [4M2 × 4r2M2] for any color band.
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resulting in a simplified model:

Y i = DiXi + V i i = R,G,B . (4)

As such, the classical approach to the multi-frame reconstruction of color images has been a two-step

process. The first step is to solve (4) for each image (demosaicing step) and the second step is to use

the model in (3) to fuse the LR images resulting from the first step, reconstructing the color HR image

(usually each R, G , or B bands is processed individually). Of course, this two step method is a suboptimal

approach to solving the overall problem. In Section IV, we propose a Maximum A-Posteriori (MAP)

estimation approach to directly solve (1).

B. MAP Approach to Multi-Frame Image Reconstruction

Following the forward model of (1), the problem of interest is an inverse problem, wherein the source

of information (HR image) is estimated from the observed data (LR images). An inherent difficulty with

inverse problems is the challenge of inverting the forward model without amplifying the effect of noise

in the measured data. In many real scenarios, the problem is worsened by the fact that the system matrix

T is singular or ill-conditioned. Thus, for the problem of super-resolution, some form of regularization

must be included in the cost function to stabilize the problem or constrain the space of solutions.

From a statistical perspective, regularization is incorporated as a priori knowledge about the solution.

Thus, using the Maximum A-Posteriori (MAP) estimator, a rich class of regularization functions emerges,

enabling us to capture the specifics of a particular application. This can be accomplished by way of

Lagrangian type penalty terms as in

X̂ = ArgMin
X

[ρ(Y , TX) + λΓ(X)] , (5)

where ρ, the data fidelity term, measures the “distance” between the model and measurements, and Γ is

the regularization cost function, which imposes a penalty on the unknown X to direct it to a better formed

solution. The regularization parameter, λ, is a scalar for properly weighting the first term (data fidelity

cost) against the second term (regularization cost). Generally speaking, choosing λ could be either done

manually, using visual inspection, or automatically using methods like Generalized Cross-Validation [28],

[29], L-curve [30], or other techniques. How to choose such regularization parameters is in itself a vast

topic, which we will not treat in the present paper.
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C. Monochromatic Spatial Regularization

Tikhonov regularization, of the form Γ(X) = ‖ΛX‖2
2, is a widely employed form of regularization [9],

[6], where Λ is a matrix capturing some aspects of the image such as its general smoothness. Tikhonov

regularization penalizes energy in the higher frequencies of the solution, opting for a smooth and hence

blurry image.

To achieve reconstructed images with sharper edges, in the spirit of the total variation criterion [31],

[32] and a related method called the bilateral filter 9 [33], [34], a robust regularizer called Bilateral-TV

(B-TV) was introduced in [3]. The B-TV regularizing function looks like:

Γ(X) =
P∑

l=−P

P∑
m=−P

α|m|+|l|‖X − Sl
xSm

y X‖1 , (6)

where Sl
x and Sm

y are the operators corresponding to shifting the image represented by X by l pixels in

horizontal direction and m pixels in vertical direction, respectively. This cost function in effect computes

derivatives across multiple scales of resolution (as determined by the parameter P ). The scalar weight

0<α<1 is applied to give a spatially decaying effect to the summation of the regularization term. The

parameter “P” defines the size of the corresponding Bilateral filter kernel. The Bilateral filter and its

parameters are extensively discussed in [33], [34], and [3].

The performance of B-TV and Tikhonov priors are thoroughly studied in [3]. The B-TV regularization

is used in Section IV to help reconstruct the luminance component of the demosaiced images. Note that,

these two regularization terms in the presented form do not consider the correlation of different color

bands.

D. Color Regularization

To reduce color artifacts, a few MAP based demosaicing algorithms have adapted regularization

terms for color channels. Typically, the color regularization priors are either applied on the chrominance

component of an image (after transforming to a suitable color space such as YIQ representation [19]),

or directly on the RGB bands [18]. While the former can be easily implemented by some isotropic

smoothing priors such as Tikhonov regularization, the latter is computationally more complicated.

Note that, although different bands may have larger or smaller gradient magnitudes at a particular edge,

it is reasonable to assume the same edge orientation and location for all color channels. That is to say,

9Note that by adopting a different realization of the bilateral filter, [26] has proposed a successful single frame demosaicing

method.
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if an edge appears in the red band at a particular location and orientation, then an edge with the same

location and orientation should appear in the other color bands. Therefore, a cost function that penalizes

the difference in edge location and/or orientation of different color bands incorporates the correlation

between different color bands prior. We will employ such a cost function in Section IV to remove color

artifacts.

Following [18], minimizing the vector product norm of any two adjacent color pixels forces different

bands to have similar edge location and orientation. The vector (outer) product of M : [mr,mg,mb]T

and N : [nr, ng, nb]T , which represent the color values of two adjacent pixels, is defined as:

‖ M × N ‖2
2= [|M ||N |sin(Θ)]2 = ‖�i(mgnb − mbng)‖2

2 + ‖�j(mbnr − mrnb)‖2
2 + ‖�k(mrng − mgnr)‖2

2

where Θ is the angle between these two vectors. As the data fidelity penalty term will restrict the values

of |M | and |N |, minimization of ‖M ×N‖2
2 will minimize sin(Θ), and consequently the Θ itself, where

a small value of Θ is an indicator of similar orientation.

E. Data Fidelity

One of the most common cost functions to measure the closeness of the final solution to the measured

data is the least-squares (LS) cost function, which minimizes the L2 norm of the residual vector,

ρ(Y , TX) = ‖Y − TX‖2
2 , (7)

(See [9], [10], [35] as representative works). For the case where the noise V is additive white, zero mean

Gaussian, this approach has the interpretation of providing the Maximum Likelihood (ML) estimate of

X [9]. However, a statistical study of the noise properties found in many real image sequences used for

multi-frame image fusion techniques, suggests that heavy-tailed noise distributions such as Laplacian are

more appropriate models (especially in the presence of the inevitable motion estimation error) [36]. In

[3], an alternate data fidelity term based on the L1 norm is recently used, which has been shown to be

very robust to data outliers:

ρ(Y , TX) = ‖Y − TX‖1 . (8)

Note that the L1 norm is the ML estimate of data in the presence of Laplacian noise. The performance

of the L1 and L2 norms is compared and discussed in [3]. The performance of the L1 and L2 norms

is compared and discussed in [3]. In this paper (Section IV), we have adopted the L 1 norm (which is

known to be more robust than L2) as the data fidelity measure.
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F. Speed-Ups for the Special Case of Translation Motion and Common Space-Invariant Blur

Considering translational motion model and common10 space-invariant PSF, the operators H and F (k)

are commutative (F (k)H = HF (k)). We can rewrite (1) as

Y i(k) = Di(k)F (k)HX + V i(k) k = 1, . . . , N i = R,G,B , (9)

By substituting Z = HX, the inverse problem may be separated into the much simpler sub-tasks of:

1) Fusing the available images and estimating a blurred high-resolution image from the low-resolution

measurements (we call this result Ẑ).

2) Estimating the deblurred image X̂ from Ẑ .

The optimality of this method is extensively discussed in [3], where it is shown that Ẑ is the weighted

mean (mean or median operators, for the cases of L2 norm and L1 norm, respectively) of all measurements

at a given pixel, after proper zero filling and motion compensation. We call this operation Shift-And-Add,

which greatly speeds-up the task of multi-frame image fusion under the assumptions made. To compute

the Shift-And-Add image, first the relative motion between all LR frames is computed. Then, a set of

HR images is constructed by up-sampling each LR frame by zero filling. Then, these HR frames are

registered with respect to the relative motion of the corresponding LR frames. A pixel-wise mean or

median operation on the non-zero values of these HR frames will result in the Shift-And-Add image.

In the next section, we use the penalty terms described in this section to formulate our proposed method

of multi-frame demosaicing and color super-resolution.

IV. MULTI-FRAME DEMOSAICING

In Section II-C we indicated how the multi-frame demosaicing is fundamentally different than single-

frame demosaicing. In this section, we propose a computationally efficient MAP estimation method to

fuse and demosaic a set of LR frames (which may have been color-filtered by any CFA) resulting in

a color image with higher spatial resolution and reduced color artifacts. Our MAP based cost function

consists of the following terms, briefly motivated in the previous section:

1) A penalty term to enforce similarities between the raw data and the HR estimate (Data Fidelity

Penalty Term).

2) A penalty term to encourage sharp edges in the luminance component of the HR image (Spatial

Luminance Penalty Term).

10∀k H(k) = H , which is true when all images are acquired with the same camera.
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3) A penalty term to encourage smoothness in the chrominance component of the HR image (Spatial

Chrominance Penalty Term).

4) A penalty term to encourage homogeneity of the edge location and orientation in different color

bands (Inter-Color Dependencies Penalty Term).

Each of these penalty terms will be discussed in more detail in the following subsections.

A. Data Fidelity Penalty Term

This term measures the similarity between the resulting HR image and the original LR images. As it is

explained in Section III-E and [3], L1 norm minimization of the error term results in robust reconstruction

of the HR image in the presence of uncertainties such as motion error. Considering the general motion

and blur model of (1), the data fidelity penalty term is defined as:

J0(X) =
∑

i=R,G,B

N∑
k=1

‖Di(k)H(k)F (k)X i − Y i(k)‖1 (10)

Note that the above penalty function is applicable for general models of data, blur and motion. However,

in this paper we only treat the simpler case of common space invariant PSF and translational motion.

This could, for example, correspond to a vibrating camera acquiring a sequence of images from a static

scene.

For this purpose, we use the two step method of Section III-F to represent the data fidelity penalty term,

which is easier to interpret and has a faster implementation potential [3]. This simplified data fidelity

penalty term is defined as:

J0(X) =
∑

i=R,G,B

‖Φi

(
HX̂i − Ẑi

)
‖1 , (11)

where ẐR, ẐG, and ẐB are the three color channels of the color Shift-And-Add image, Ẑ. The matrix

Φi (i = R,G,B), is a diagonal matrix with diagonal values equal to the square root of the number of

measurements that contributed to make each element of Ẑi (in the square case is the identity matrix).

So, the undefined pixels of ẐB have no effect on the HR estimate. On the other hand, those pixels of

ẐB which have been produced from numerous measurements, have a stronger effect in the estimation

of the HR frame. The Φi∈{R,G,B} matrices for the multi-frame demosaicing problem are sparser than

the corresponding matrices in the color SR case. The vectors X̂R, X̂G, and X̂B are the three color

components of the reconstructed HR image X̂.
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B. Spatial Luminance Penalty Term

The human eye is more sensitive to the details in the luminance component of an image than the

details in the chrominance components [19]. Therefore, it is important that the edges in the luminance

component of the reconstructed HR image look sharp. As explained in Section III-C, applying B-TV

regularization to the luminance component will result in this desired property [3]. The luminance image

can be calculated as the weighted sum X L = 0.299XR + 0.597XG + 0.114XB as explained in [37].

The luminance regularization term is then defined as:

J1(X) =
P∑

l=−P

P∑
m=−P

α|m|+|l|‖XL − Sl
xS

m
y XL‖1. (12)

C. Spatial Chrominance Penalty Term

Spatial regularization is required also for the chrominance layers. However, since the HVS is less

sensitive to the resolution of these bands, we can use a simpler regularization, based on the L 2 norm [3]:

J2(X) = ‖ΛXC1‖2
2 + ‖ΛXC2‖2

2 , (13)

where the images XC1 and XC2 are the I and Q layers in the YIQ color representation 11.

D. Inter-Color Dependencies Penalty Term

This term penalizes the mismatch between locations or orientations of edges across the color bands. As

described in Section III-D, the authors of [18] suggest a pixelwise inter-color dependencies cost function

to be minimized. This term has the vector outer product norm of all pairs of neighboring pixels, which

is solved by the finite element method. With some modifications to what was proposed in [18], our

inter-color dependencies penalty term is a differentiable cost function:

J3(X) =
1∑

l=−1

1∑
m=−1

[
‖XG � Sl

xS
m
y XB − XB � Sl

xSm
y XG‖2

2+

‖XB � Sl
xSm

y XR − XR � Sl
xSm

y XB‖2
2 + ‖XR � Sl

xSm
y XG − XG � Sl

xS
m
y XR‖2

2

]
(14)

where � is the element by element multiplication operator.

11The Y layer (XL) is treated in (12).
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E. Overall Cost Function

The overall cost function is the summation of the cost functions described in the previous subsections:

X̂ = ArgMin
X

[
J0(X) + λ′J1(X) + λ′′J2(X) + λ′′′J3(X)

]
. (15)

Steepest descent optimization may be applied to minimize this cost function. In the first step, the derivative

of (15) with respect to one of the color bands is calculated, assuming the other two color bands are fixed.

In the next steps, the derivative will be computed with respect to the other color channels. For example

the derivative with respect to the Green band (XG) is calculated as follows:

∇X̂
n
G = HT ΦT

Gsign(ΦGHX̂
n
G− ΦGẐG) +

λ
′

P∑
l=−P

P∑
m=−P

α|m|+|l| × 0.5870 × [I − S−m
y S−l

x ]sign
(
0.2989(Xn

R − Sl
xSm

y Xn
R)+

0.5870(Xn
G − Sl

xSm
y Xn

G) + 0.1140(Xn
B − Sl

xSm
y Xn

B)
)

+

λ
′′

1∑
l=−1

1∑
m=−1

[
2(Xl,m

B − S−l
x S−m

y XB)(Xl,m
B XG − XBSl

xSm
y XG)+

2(Xl,m
R − S−l

x S−m
y XR)(Xl,m

R XG −XRSl
xSm

y XG)
]
+

λ
′′′

ΛT Λ(−0.1536 × XR + 0.2851 × XG − 0.1316 × XB) (16)

where S−l
x and S−m

y define the transposes of matrices S l
x and Sm

y , respectively, and have a shifting

effect in the opposite directions of S l
x and Sm

y . The notation XR, and XB stands for the diagonal matrix

representations of the Red and Blue bands and X l,m
R and Xl,m

B are the diagonal representations of these

matrices shifted by l and m pixels in the horizontal and vertical directions, respectively. The calculation

of the inter-color dependencies term derivative is explained in the Appendix I.

Matrices H , Λ, Φ, D, S l
x, and Sm

y and their transposes can be exactly interpreted as direct image

operators such as blur, high-pass filtering, masking, down-sampling, and shift. Noting and implementing

the effects of these matrices as a sequence of operators on the images directly spares us from explicitly

constructing them as matrices. This property helps our method to be implemented in a fast and memory

efficient way.

The gradient of the other channels will be computed in the same way, and the following steepest

(coordinate) descent iterations will be set up to calculate the HR image estimate iteratively.

X̂
n+1
i = X̂

n
i − β∇X̂

n
i i = R,G,B , (17)

where the scalar β is the step size.
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V. RELATED METHODS

As mentioned earlier, there has been very little work on the problem we have posed here. One related

paper is the work of Zomet and Peleg [38], who have recently proposed a novel method for combining

the information from multiple sensors, which can also be used for demosaicing purposes. Although their

method has produced successful results for the single frame demosaicing problem, it is not specifically

posed or directed towards solving the multi-frame demosaicing problem, and no multi-frame demosaicing

case experiment is given.

The method of [38] is based on the assumption of affine relation between the intensities of different

sensors in a local neighborhood. To estimate the Red channel, first, affine relations that project Green

and Blue channels to the Red channel are computed. In the second stage, a super-resolution algorithm

(e.g. the method of [7]) is applied on the available LR images in the Red channel (i.e. the original CFA

data of the Red channel plus the projected Green and Blue channels) to estimate the HR Red channel

image. A similar procedure estimates the HR Green and Blue channel images. As affine model is not

always valid for all sensors or image sets, so an affine model validity test is utilized in [38]. In the case

that the affine model is not valid for some pixels, those projected pixels are simply ignored.

The method of [38] is highly dependent on the validity of the affine model, which is not confirmed

for the multi-frame case with inaccurate registration artifacts. Besides, the original CFA LR image of a

channel and the less reliable projected LR images of other channels are equally weighted to construct

the missing values, and this does not appear to be an optimal solution.

In contrast to their method, our proposed technique exploits the correlation of the information in

different channels explicitly to guarantee similar edge position and orientation in different color bands.

Our proposed method also exploits the difference in sensitivity of the human eye to the frequency content

and outliers in the luminance and chrominance components of the image.

In parallel to our work, Gotoh and Okotumi [39] are proposing another MAP estimation method

for solving the same joint demosaicing/super-resolution problem. While their algorithm and ours share

much in common, there are fundamental differences between our algorithm and theirs in the robustness to

model errors, and prior used. Model errors, such as choice of blur or motion estimation errors, are treated

favorably by our algorithm due to the L1 norm employed in the likelihood fidelity term. By contrast, in

[39], an L2-norm data fusion term is used, which is not robust to such errors. In [3] it is shown how this

difference in norm can become crucial in obtaining better results in the presence of model mismatches.

As to the choice of prior, ours is built of several pieces, giving an overall edge preserved outcome,
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smoothed chrominance layers, and forced edge and orientation alignment between color layers. To the

contrary, [39] utilizes an unisotropic Tikhonov (L2 norm) method of regularizing.

VI. EXPERIMENTS

Experiments on synthetic and real data sets are presented in this section. In the first experiment,

following the model of (1), we created a sequence of LR frames from an original HR image (Figure

4.a), which is a color image with full RGB values. First we shifted this HR image by one pixel in

the vertical direction. Then to simulate the effect of camera PSF, each color band of this shifted image

was convolved with a symmetric Gaussian low-pass filter of size 5× 5 with standard deviation equal to

one. The resulting image was subsampled by the factor of 4 in each direction. The same process with

different motion vectors (shifts) in vertical and horizontal directions was used to produce 10 LR images

from the original scene. The horizontal shift between the low resolution images was varied between 0 to

.75 pixels in the low-resolution grid (0 to 3 pixels in the high-resolution grid). The vertical shift between

the low resolution images varied between 0 to .5 pixels in the low-resolution grid (0 to 2 pixels in the

high-resolution grid). To simulate the errors in motion estimation, a bias equal to half a pixel shift in

the LR grid was intentionally added to the known motion vector of one of the LR frames. We added

Gaussian noise to the resulting LR frames to achieve SNR equal12 to 30dB. Then each LR color image

was subsampled by the Bayer filter.

In order to show what one of those measured images looks like, one of these Bayer filtered LR images

is reconstructed by the method in [14] and shown in Figure 4.b. The above method is implemented on

Kodak DCS-200 digital cameras [40], so each LR image may be thought of as one picture taken with

this camera brand. Figure 4.c. shows the result of using the more sophisticated demosaicing method 13

of [44].

As the motion model for this experiment is translational and the blur kernel is space invariant, we can

use the fast model of (16) to reconstruct the blurry image (Ẑ) on the HR grid. The Shift-And-Add result

of the demosaiced LR frames after bilinear interpolation14, before deblurring and demosaicing is shown

in Figure 4.d. We used the result of the Shift-And-Add method as the initialization of the iterative multi-

frame demosaicing methods. We used the original set of frames (raw data) to reconstruct a HR image

12Signal to noise ratio (SNR) is defined as 10 log10
σ2

σ2
n

, where σ2, σ2
n are variance of a clean frame and noise, respectively.

13We thank Prof. Ron Kimmel of the Technion for providing us with the code that implements the method in [44].

14Interpolation is needed as this experiment is an under-determined problem, where some pixel values are missing.



20

with reduced color artifacts. Figures 5.a, 5.b, and 5.c show the effect of the individual implementation

of each regularization term (luminance, chrominance, and inter-color dependencies), described in Section

IV.

We applied the method of [44] to demosaic each of these 10 LR frames individually, and then applied

the robust super-resolution method of [3] on each resulting color channel. The result of this method is

shown in Figure 5.d. We also applied the robust super-resolution method of [3] on the raw (Bayer filtered)

data (before demosaicing)15. The result of this method is shown in Figure 6.a. To study the effectiveness

of each regularization term, we paired (inter-color dependencies-luminance, inter-color dependencies-

chrominance, and luminance-chrominance) regularization terms for which the results are shown in Figures

6.b, 6.c, and 6.d ,respectively. Finally, Figure 7.a shows the result of the implementation of (15) with all

terms. The parameters used for this example are as follows16: β = 0.002, α = 0.9, λ
′
= 0.01, λ

′′
= 150,

λ
′′′

= 1.

It is clear that the resulting image (Figure 7.a) has a better quality than the LR input frames or other

reconstruction methods. Quantitative measurements confirm this visual comparison. We used PSNR 17

and S-CIELAB 18 measures to compare the performance of each of these methods. Table I compares

these values in which the proposed method has the lowest S-CIELAB error and the highest PSNR values

(and also the best visual quality specially in the red lifesaver section of the image).

In the second experiment, we used 30 compressed images captured from a commercial webcam (PYRO-

1394). Figure 8.a shows one of these LR images (a selected region of this image is zoomed in Figure 8.e

for closer examination). Note that the compression and color artifacts are quite apparent in these images.

15To apply the monochromatic SR method of [3] on this color-filtered sequence, we treated each color band separately. To

consider the color-filtering operation, we substituted matrix A in Equation (23) of [3] with matrix Φ in (11).

16The criteria for parameter selection in this example (and other examples discussed in this paper) was to choose parameters

which produce visually most appealing results. Therefore to ensure fairness, each experiment was repeated several times with

different parameters and the best result of each experiment was chosen as the outcome of each method.

17The PSNR of two vectors X and X̂ of size [4r2M2 × 1] is defined as:

PSNR(X, X̂) = 10log10(
2552 × 4r2M2

‖X − X̂‖2
2

)

18The S-CIELAB measure is a perceptual color fidelity measure that measures how accurate the reproduction of a color is to

the original when viewed by a human observer [41]. In our experiments, we used the code with default parameters used in the

implementation of this measure available at http://white.stanford.edu/∼brian/scielab/scielab.html
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Shift-And-Add LR Demosaiced [44] +SR [3] Only Lumin. Only Orient Only Chromin. .

S-CIELAB 1.532×1011 1.349×1011 7.892×1010 6.498×1010 4.648×1010

PSNR (dB) 17.17 19.12 17.74 20.10 20.35

SR [3] on Raw Data Lumin.+Orient. Orient.+Chrom. Lumin.+Chrom. Full

S-CIELAB 5.456×1010 4.543×1010 4.382×1010 3.548×1010 3.365×1010

PSNR (dB) 19.28 20.79 20.68 21.12 21.13

TABLE I

THE QUANTITATIVE COMPARISON OF THE PERFORMANCE OF DIFFERENT DEMOSAICING METHODS ON THE LIGHTHOUSE

SEQUENCE. THE PROPOSED METHOD HAS THE LOWEST S-CIELAB ERROR AND THE HIGHEST PSNR VALUE.

This set of frames was already demosaiced, and no information was available about the original sensor

values, which makes the color enhancement task more difficult. This example may be also considered as a

multi-frame color super-resolution case. The (unknown) camera PSF was assumed to be a 4×4 Gaussian

kernel with standard deviation equal to one. As the relative motion between these images followed the

translational model, we only needed to estimate the motion between the luminance components of these

images [42]. We used the method described in [43] to computed the motion vectors.

The Shift-And-Add result (resolution enhancement factor of 4) is shown in Figure 8.b (zoomed in

Figure 8.f). In Figure 8.c (zoomed in Figure 8.g) the method of [3] is used for increasing the resolution

by a factor of 4 in each color band, independently. And finally the result of applying our method on this

sequence is shown in Figure 8.d (zoomed in Figure 8.h), where color artifacts are significantly reduced.

The parameters used for this example are as follows: β = 0.004, α = 0.9, λ
′
= 0.25, λ

′′
= 500, λ

′′′
= 5.

In the third experiment, we used 40 compressed images of a test pattern from a surveillance camera;

courtesy of Adyoron Intelligent Systems Ltd., Tel Aviv, Israel. Figure 9.a shows one of these LR images (a

selected region of this image is zoomed in Figure 10.a for closer examination). Note that the compression

and color artifacts are quite apparent in these images. This set of frames was also already demosaiced,

and no information was available about the original sensor values, which makes the color enhancement

task more difficult. This example may be also considered as a multi-frame color super-resolution case.

The (unknown) camera PSF was assumed to be a 6 × 6 Gaussian kernel with standard deviation equal

to two.

We used the method described in [43] to compute the motion vectors. The Shift-And-Add result

(resolution enhancement factor of 4) is shown in Figure 9.b (zoomed in Figure 10.b). In Figure 9.c

(zoomed in Figure 10.c) the method of [3] is used for increasing the resolution by a factor of 4 in each
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color band, independently. And finally the result of applying the proposed method on this sequence is

shown in Figure 9.d, (zoomed in Figure 10.d), where color artifacts are significantly reduced. Moreover,

comparing to the Figures 9.a-d, the compression errors have been removed more effectively in Figures

9.d. The parameters used for this example are as follows: β = 0.004, α = 0.9, λ
′
= 0.25, λ

′′
= 500,

λ
′′′

= 5.

In the fourth, fifth, and sixth experiments (Girl, Bookcase, and Window sequences), we used 31

uncompressed, raw CFA images (30 frames for the Window sequence) from a video camera (based on

Zoran 2MP CMOS Sensors). We applied the method of [14] to demosaic each of these LR frames,

individually. Figure 11.a (zoomed in Figure 12.a) shows one of these images from the Girl sequence

(corresponding image of the Bookcase sequence is shown in Figure 13.a and the corresponding image

of the Window sequence is shown in Figure 15.a). The result of the more sophisticated demosaicing

method of [44] for Girl sequence is shown in Figure 11.b (zoomed in Figure 12.b). Figure 13.b shows

the corresponding image for the Bookcase sequence and Figure 15.b shows the corresponding image for

the Window sequence.

To increase the spatial resolution by a factor of three, we applied the proposed multi-frame color

super-resolution method on the demosaiced images of these two sequences. Figure 11.c shows the HR

color super-resolution result from the LR color images of Girl sequence demosaiced by the method of

[14] (zoomed in Figure 12.c). Figure 13.c shows the corresponding image for the Bookcase sequence and

Figure 15.c shows the corresponding image for the Window sequence. Similarly, Figure 11.d shows the

result of resolution enhancement of the LR color images from Girl sequence demosaiced by the method

of [44] (zoomed in Figure 12.d). Figure 13.d shows the corresponding image for the Bookcase sequence

and Figure 15.d shows the corresponding image for the Window sequence.

Finally, we directly applied the proposed multi-frame demosaicing method on the raw CFA data to

increase the spatial resolution by the same factor of three. Figure 11.e shows the HR result of multi-frame

demosaicing of the LR raw CFA images from Girl sequence without using the inter color dependence

term [J3(X)] (zoomed in Figure 12.e). Figure 14.a shows the corresponding image for the Bookcase

sequence and Figure 15.e shows the corresponding image for the Window sequence. Figure 11.f shows

the HR result of applying the multi-frame demosaicing method using all proposed terms in (15) on the LR

raw CFA images from Girl sequence (zoomed in Figure 12.f). Figure 14.b shows the corresponding image

for the Bookcase sequence and Figure 15.f shows the corresponding image for the Window sequence.

These experiments show that single frame demosaicing methods such as [44] (which in effect implement

anti-aliasing filters) remove color artifacts at the expense of making the images more blurry. The proposed
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color super-resolution algorithm can retrieve some high frequency information and further remove the

color artifacts. However, applying the proposed multi-frame demosaicing method directly on raw CFA

data produces the sharpest results and effectively removes color artifacts. These experiments also show

the importance of the inter-color dependence term which further removes color artifacts. The parameters

used for the experiments on Girl, Bookcase, and Window sequences are as follows: β = 0.002, α = 0.9,

λ
′
= 0.1, λ

′′
= 250, λ

′′′
= 25. The (unknown) camera PSF was assumed to be a tapered 5× 5 disk PSF

19.

VII. DISCUSSION AND FUTURE WORK

In this paper, based on the MAP estimation framework, we proposed a unified method of demosaicing

and super-resolution, which increases the spatial resolution and reduces the color artifacts of a set of low-

quality color images. Using the L1 norm for the data error term makes our method robust to errors in data

and modelling. Bilateral regularization of the luminance term results in sharp reconstruction of edges,

and the chrominance and inter-color dependencies cost functions remove the color artifacts from the HR

estimate. All matrix-vector operations in the proposed method are implemented as simple image operators.

As these operations are locally performed on pixel values on the HR grid, parallel processing may also

be used to further increase the computational efficiency. The computational complexity of this method is

on the order of the computational complexity of the popular iterative super-resolution algorithms, such

as [9]. Namely, it is linear in the number of pixels.

The inter-color dependencies term (14) results in the non-convexity of the overall penalty function.

Therefore, the steepest decent optimization of (15) may reach a local rather than the global minimum of

the overall function. The non-convexity does not impose a serious problem if a reasonable initial guess

is used for the steepest decent method, as many experiments showed effective multi-frame demosaicing

results. In our experiments we noticed that a good initial guess is the Shift-And-Add result of the

individually demosaiced low-resolution images.

Accurate subpixel motion estimation is an essential part of any image fusion process such as multi-

frame super-resolution or demosaicing. To the best of our knowledge, no paper has addressed the problem

of estimating motion between Bayer filtered images. However, a few papers have addressed related issues.

Ref. [42] has addressed the problem of color motion estimation, where information from different color

channels are incorporated by simply using alternative color representations such as HSV or normalized

19MATLAB command fspecial(’disk’,2) creates such blurring kernel.
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RGB. More work remains to be done to fully analyze subpixel motion estimation from colored filtered

images.
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APPENDIX I

DERIVATION OF THE INTER-COLOR DEPENDENCIES PENALTY TERM

In this appendix, we illustrate the differentiation of the first term in (14), which we call L, with respect

to XG. From (14) we have:

L = ‖XG�Sl
xS

m
y XB−XB�Sl

xS
m
y XG‖2

2
� is commutative−→ L = ‖Sl

xSm
y XB�XG−XB�Sl

xS
m
y XG‖2

2

We can substitute the element by element multiplication operator “�”, with the differentiable dot product

by rearranging XB as the diagonal matrix20 XB and S l
xSm

y XB as Xl,m
B , which is the diagonal form of

shifted XB by l, m pixels in horizontal and vertical directions.

L = ‖Xl,m
B XG − XBSl

xS
m
y XG‖2

2 (18)

Using the identity:

∂‖QC‖2
2

∂C
=

∂
(
CTQTQC

)
∂C

= 2QTQC

and noting that Xl,m
B and XB are symmetric matrices, the differentiation with respect to green band will

be computed as follows:

∂L

∂XG
= 2(Xl,m

B − S−l
x S−m

y XB)(Xl,m
B XG − XBSl

xSm
y XG)

20We are simply denoting a vector Q to its diagonal matrix representation Q such that:⎛
⎜⎜⎜⎜⎜⎝

q1

q2

...

q4r2M2

⎞
⎟⎟⎟⎟⎟⎠

−→

⎛
⎜⎜⎜⎜⎜⎝

q1 0 · · · 0

0 q2 · · · 0

...
...

. . .
...

0 0 · · · q4r2M2

⎞
⎟⎟⎟⎟⎟⎠

Q Q
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Differentiation of the second term in (14), and also differentiation with respect to the other color bands

follow the same technique.
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a: Original image b: LR image demosaiced by the method in [14]

c: LR image demosaiced by the method in [44] d: Shift-And-Add image.

Fig. 4. A HR image (a) is passed through our model of camera to produce a set of LR images. One of these LR images is

demosaiced by the method in [14] (b). The same image is demosaiced by the method in [44] (c). Shift-And-Add on the 10 input

LR images is shown in (d).
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a: Reconst. with luminance regul. b: Reconst. with inter-color regul.

c: Reconst. with chrominance regul. d: Reconst. from LR demosaiced [44]+SR[3]

Fig. 5. Multi-frame demosaicing of this set of LR frames with the help of only luminance, inter-color dependencies or

chrominance regularization terms is shown in (a), (b), and (c), respectively. The result of applying the super-resolution method

of [3] on the LR frames each demosaiced by the method [44] is shown in (d).
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a:Reconst. from SR [3] on raw images b: Reconst. with inter-color and luminance regul.

c: Reconst. with chrominance and inter-color regul. d: Reconst. from chrominance and luminance regul.

Fig. 6. The result of super-resolving each color band (raw data before demosaicing) separately considering only bilateral

regularization [3], is shown in (a). Multi-frame demosaicing of this set of LR frames with the help of only inter-color

dependencies-luminance, inter-color dependencies-chrominance, and luminance-chrominance regularization terms is shown in

(b), (c), and (d), respectively.
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a: Reconst. with all terms.

Fig. 7. The result of applying the proposed method (using all regularization terms) to this data set is shown in (a).
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a b c d

e f g h

Fig. 8. Multi-frame color super-resolution implemented on a real data sequence. (a) shows one of the input LR images and (b) is

the Shift-And-Add result increasing resolution by a factor of 4 in each direction. (c) is the result of the individual implementation

of the super-resolution [3] on each color band. (d) is implementation of (15) which has increased the spatial resolution, removed

the compression artifacts, and also reduced the color artifacts. Figures (e), (f), (g), and (h) are the zoomed images of the Figures

(a), (b), (c), and (d) respectively.



33

a: LR b: Shift-And-Add

c: SR [3] on LR frames d: Proposed method

Fig. 9. Multi-frame color super-resolution implemented on a real data sequence. (a) shows one of the input LR images and (b) is

the Shift-And-Add result increasing resolution by a factor of 4 in each direction. (c) is the result of the individual implementation

of the super-resolution [3] on each color band. (d) is implementation of (15) which has increased the spatial resolution, removed

the compression artifacts, and also reduced the color artifacts. These images are zoomed in Figure 10.
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a: LR b: Shift-And-Add

c: SR [3] on LR frames d: Proposed method

Fig. 10. Multi-frame color super-resolution implemented on a real data sequence. A selected section of Figure 9(a), 9(b), 9(c),

and 9(d) are zoomed in Figure 10(a), 10(b), 10(c), and 10(d), respectively. In (d) almost all color artifacts that are present on

the edge areas of (a), (b), and (c) are effectively removed.
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a b c

d e f

Fig. 11. Multi-frame color super-resolution implemented on a real data sequence. (a) shows one of the input LR images

demosaiced by [14] and (b) is one of the input LR images demosaiced by the more sophisticated [44]. (c) is the result of

applying the proposed color-super-resolution method on 31 LR images each demosaiced by [14] method. (d) is the result of

applying the proposed color-super-resolution method on 31 LR images each demosaiced by [44] method. The result of applying

our method on the original un-demosaiced raw LR images (without using the inter color dependence term) is shown in (e). (f)

is the result of applying our method on the original un-demosaiced raw LR images.
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a b c

d e f

Fig. 12. Multi-frame color super-resolution implemented on a real data sequence (zoomed). (a) shows one of the input LR

images demosaiced by [14] and (b) is one of the input LR images demosaiced by the more sophisticated [44]. (c) is the result

of applying the proposed color-super-resolution method on 31 LR images each demosaiced by [14] method. (d) is the result of

applying the proposed color-super-resolution method on 31 LR images each demosaiced by [44] method. The result of applying

our method on the original un-demosaiced raw LR images (without using the inter color dependence term) is shown in (e). (f)

is the result of applying our method on the original un-demosaiced raw LR images.
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a b

c d

Fig. 13. Multi-frame color super-resolution implemented on a real data sequence. (a) shows one of the input LR images

demosaiced by [14] and (b) is one of the input LR images demosaiced by the more sophisticated [44]. (c) is the result of

applying the proposed color-super-resolution method on 31 LR images each demosaiced by [14] method. (d) is the result of

applying the proposed color-super-resolution method on 31 LR images each demosaiced by [44] method.
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a b

Fig. 14. Multi-frame color super-resolution implemented on a real data sequence. The result of applying our method on the

original un-demosaiced raw LR images (without using the inter color dependence term) is shown in (a). (b) is the result of

applying our method on the original un-demosaiced raw LR images.
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a b

c d

e f

Fig. 15. Multi-frame color super-resolution implemented on a real data sequence. (a) shows one of the input LR images

demosaiced by [14] and (b) is one of the input LR images demosaiced by the more sophisticated [44]. (c) is the result of

applying the proposed color-super-resolution method on 30 LR images each demosaiced by [14] method. (d) is the result of

applying the proposed color-super-resolution method on 30 LR images each demosaiced by [44] method. The result of applying

our method on the original un-demosaiced raw LR images (without using the inter color dependence term) is shown in (e). (f)

is the result of applying our method on the original un-demosaiced raw LR images.




